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1 Introduction

Trace analysis is a useful tool for debugging and optimizing Haskell programs, especially when dealing

with parallelism. Several tools exist to parse and analyze eventlog �les generated by the Glasgow Haskell

Compiler (GHC) runtime system [2],[3],[4],[5],[1]. While o�ering features similar to the popular Thread-

Scope, which does not handle Eden traces, the Eden Trace Viewer (EdenTV) o�ers additional features

speci�cally designed to analyze, benchmark and troubleshoot programs written in Eden [2],[3]. This

includes the analysis of Eden traces not only on the level of individual threads, but includes additional

views to analyze traces on the machine and process level. It also o�ers the ability to display Eden-speci�c

inter-process communication via messages, so that data �ow between machines and processes can be

analyzed and enhanced.

Figure 1: Screenshot of EdenTV, displaying the machine view of a trace.

However, there are some areas in which the EdenTV could still be improved upon. The �rst of which is

the limitation of the �le size: Traces generated by the GHC runtime system tend to be rather large in size

- in the order of several hundred MB to several GB per minute runtime. Additionally, parallel programs

created with Eden generate multiple traces, because every core (or machine) has its own runtime system.

Yet, EdenTV is only capable of displaying traces which �t into the RAM of the computer it is running

on. In order to be analyzable programs have to be limited to a short running time - in the order of

several seconds to a few minutes, depending on the number of traces generated and the amount of RAM

available to the researcher - to be displayed satisfactorily. Secondly, EdenTV renders trace visualizations

to a single image bu�er with �xed resolution. As a result, events which have a duration that translates

into an image width of less than a single pixel cannot be displayed properly. Prior experience in using

EdenTV suggests that the addition of these features would improve the research process.

Lastly, EdenTV is an organically grown piece of research software, which has been edited and improved

upon by several authors over di�erent periods of time. It is thus a powerful tool for doing analysis on

Eden traces, but it also contains many di�erent code styles and paradigms which hinders readability

and extensibility. This thesis aims at providing a tracing tool with a deliberately designed and well-

documented interface, so that additional analysis tool sets can be added in the future.

Consequently, a new implementation of a trace viewer should include the following features:
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a) the ability to open �les of arbitrary size, without being constrained by the available memory

b) the ability to analyze traces at all levels of temporal resolution, i.e. the ability to zoom arbitrarily

deep into a trace

c) A well-documented and extensible interface for extending and improving trace analysis

This thesis will document implementation of such a program, which from here on will be referred to as

Eden-Tracelab.

Eden-Tracelab is split into three major parts: The parser and event processor, the web service and the

HTML5 viewer. This thesis will be structured along those parts. First, the explanation will go into some

of the technical background in chapter 3, introducing the GHC and Eden runtime, and the structure

of GHC trace �les. The source code for the parser will be explained simultaneously, as it �ts with the

explanation of the of the �le format nicely. In chapter 4 the overall structure of Eden-Tracelab is going to

be discussed, starting with the general architecture of Eden-Tracelab. Then, every part of Eden-Tracelab

will be explained in detail, starting with the remaining functionality of the event processor, namely the

processing of the parsed events to higher order events and the transfer of those events into the database.

The rest of the chapter will cover the functionality and implementation of the web service, as well as

the functionality and implementation of the HTML5 viewer. Chapter 5 contains a comparison between

Eden-Tracelab and EdenTV using an example trace.
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2 Technical Background

2.1 Eden

Eden is an extension to the Haskell programming language. It is designed to o�er the programmer the

ability to de�ne and instantiate parallel processes [6]. To understand how this is accomplished, it is

bene�cial to take a look at the main functions and data types provided by Eden. The process function

takes an ordinary function, and returns a Process.

1 process :: (Trans a, Trans b) => a -> b -> Process a b

Listing 1: De�ning Eden processes

The Trans type class is derived from the NFData type class � values being communicated between processes

in Eden are evaluated to normal form prior to sending. To instantiate a process, the (#) function is used.

1 (#) :: (Trans a, Trans b) => Process a b -> a -> b

Listing 2: Instanciating Eden processes

To understand how these two work together, the following parallel mergesort program is provided in the

standard reference:

1 mergesort :: (Ord a, Trans a) => [a] -> [a]

2 mergesort [] = []

3 mergesort [x] = [x]

4 mergesort xs = sortmerge (process mergesort # xs1)

5 (process mergesort # xs2)

6 where (xs1 ,xs2) = unshuffle xs

Listing 3: Parallel mergesort in Eden

While process de�nition and creation are explicit within Eden, process communication is mostly implicit,

and handled transparently to the programmer. This is a very powerful paradigm for the creation of par-

allel functional programs, but it also explains the need for a research tracing tool: To optimize a parallel

functional program in Eden, it can be very useful to inspect the state of the processes during the execution

of the program, and to inspect the data �ow between processes. This enables a programmer to iden-

tify if a process is waiting on a result, and to optimize the program to keep these conditions to a minimum.

Eden programs can not only be run on a multicore machine, but also across multiple distributed ma-

chines, in which case the program has to be compiled with support for a network middleware. Currently

the PVM and MPI middlewares are supported.

2.2 Eden and the GHC Runtime System

To understand the analysis done on Eden traces in this thesis, it is �rst necessary to understand the

main concepts within the GHC runtime system. This section serves as a glossary for important terms

within the runtime. It will also explain how the Eden compiler extends this runtime, and introduces the

important concepts in the Eden runtime.
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Threads

Eden threads are not Operating System(OS) threads, but lightweight threads managed by the GHC

runtime. Within the GHC runtime, threads are represented by Thread State Objects (TSOs), which are

garbage collected objects within the runtime [7]. Haskell threads are more lightweight than OS threads.

The GHC wiki states that their memory footprint that is about 100x times lighter than an OS thread

[7].

Single- and multithreaded runtime

The GHC runtime exists in two di�erent versions: The single- and multithreaded runtime [8]. It should

be noted that these names refer to number of OS threads within the runtime, both versions support

lightweight GHC threads. The multithreaded runtime is needed to enable SMP (symmetric multiproces-

sor) parallelism in compiled GHC programs. It can be enabled by the -rtsopts -threaded compiler

�ags and the following execution �ags:

+RTS -Nx -RTS

when compiling the program, where x is the number of cores to run the program on. The x parameter

can also be omitted, in which case the runtime will dynamically choose the number of capabilities when

executing the program, based on the number of processors of the machine it is executed on [9].

Capability

A capability is an abstraction over a piece of hardware capable of executing Haskell programs. When

dealing with multicore processors a capability represents a CPU core. The number of capabilities in the

runtime is controlled by the -N �ag [7].

The Eden runtime

As of now, the Eden runtime is restricted to the single-threaded GHC runtime. In other words, a single

instance of the Eden runtime will only manage a single capability. An Eden trace still contains events

belonging to an additional capability, numbered -1. This is the system capability � a kind of virtual

capability, reserved for events that are not assigned to a speci�c capability. Eden parallelism is achieved

by running multiple instances of the runtime concurrently - either on multiple cores, or spread out across

multiple physical machines. An Eden trace therefore contains a number of conventional GHC traces, one

for each instance of the runtime.

Processes

Eden adds additional abstractions to the aforementioned concepts, the most important one being pro-

cesses. A process is created by the process and (#) functions. Within the runtime, a process is a set of

lightweight threads.

Machines

During the execution of an Eden program, a machine corresponds to a single instance of the runtime.

Therefore, a machine is at the core of the execution of a Eden program. These concepts present a simple

9



hierarchy, that is fundamental to the analysis of Eden Traces: A machine holds a number of processes,

which in turn contain a set of threads.

States

At each moment each entity in the runtime is said to have a run state: Idle, Runnable, Running or

Blocked. Threads are the simplest entities with regard to the concept of run state: They can either

be Runnable, Running or Blocked. All other entities (processes and machines) de�ne their state re-

cursively through the state of their constituents. The following table is taken from the documentation

of the original EdenTV. It shows how the di�erent states correspond to color in the graphical interface [1].

Color Machine Process Thread

Blue Idle (Total processes = 0) Idle (Total threads = 0) n / a

Yellow System Time (threads runnable) Runnable (At least one thread) Runnable

Green Running (one thread) Running (one thread) Running

Red Blocked (all threads) Blocked (all threads) Blocked

Table 1: Thread/ process/ machine state color coding[1]

2.3 Tracing

When a GHC program is compiled with the -eventlog �ag, it produces a trace �le to document the events

occurring in the runtime system during the execution of the program [10]. During execution, the runtime

has a set of �xed sized bu�ers to store events in memory � one for each capability, and an extra one

containing the events not linked to a capability. These 'unassigned' events include the invocation details,

like the version of the runtime and the shell environment variables of the environment the program was

executed in. Each time a bu�er is full, it will be written to disk. This behavior is re�ected in the

chronological structure of the *.eventlog-�les. Inside the �le, the events are laid out in blocks, which

can be attributed to a single capability. Within a single block, events will appear in chronological order.

Blocks belonging to a single capability will also be in chronological order in the �le. However, blocks

belonging to di�erent capabilities will not be in chronological order within the �le. For example, the

bu�er belonging to the global pseudo-capability will often not �ll up during the course of the execution of

a program, because after the runtime has been initiated, no further global events occur until right before

termination. Therefore the events attributed to the global capability will be appended to the end of the

�le, even though they are the very �rst ones occurring during program execution. Blocks belonging to

other capabilities may also occur interspersed and may not adhere to chronological order.

This structure dictates some restrictions on any low-memory parser. If a parser only parses the events of
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a single capability, it can parse them in chronological order without having to store additional events in

memory. Yet, using a single parser to parse the events of all capabilities within the event-stream presents

additional challenges: The events within multiple blocks will have to be parsed and stored in memory,

before they can be merged in chronological order. There is a simple and elegant solution to this problem,

however. By running multiple parser instances simultaneously - one for each capability within the eventlog

- it is possible to parse in chronological order without much performance overhead, by keeping a single

event in memory for every instance of the parser. Eden-Tracelab then always processes the 'youngest'

event, and then parses the next event of that capability. When dealing with Eden *.eventlog-�les, there

is another advantage: Each *.eventlog-�le contains only two distinct capabilities: The global pseudo-

capability, and the capability the single-threaded runtime is executed on. In the eventlog �le the two

capabilities are assigned the numerical ids −1 (for the global capability) and 0 (for the actual physical

capability). Therefore, the sequential parser only needs to keep two events within its internal state.
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2.4 Parsing *.eventlog-�les

This sections documents the binary format that the GHC runtime system uses to serialize events during

run-time. As this format is only documented in the EventLog.h header �le which is part of the GHC

runtime system source code this section will give a brief overview of the format. The custom eventlog

parser that was implemented in the course of this thesis will be documented as well. As this parser

was written in a descriptive way, a side-by-side explanation of the *.eventlog-format and the parser

implementation provides the best overview of these concepts.

The hackage packages ghc-events and ghc-events-parallel (and the associated module GHC.RTS.Events)

already contain a parser for the *.eventlog-format. However, during the course of this thesis, a custom

parser for this format was implemented. There are several reasons for this decision.

The existing parser is written in a very elegant way, yet it is di�cult to modify. Changing the existing

parser into one that could be used to parse a single event at a time proved to be an awkward task as it

required stripping away many layers of abstraction. Furthermore, this approach seemed to produce hard

to read code with lots of boilerplate. Since one of the stated goals of this thesis was for Eden-Tracelab

to be easily maintainable, another approach was taken.

It should be noted that most of the parser implementation is a direct port of the existing parser into

attoparsec [11], and most of the concepts are taken directly from that implementation. The decision to

port the parser was based on the need for a more iterative, event-by-event, parser and one that is a little

more 'hackable' - even if arguably less elegant - than the existing parser.

Attoparsec o�ers a small set of default parsers with a large set of powerful combinators [11]. Parsers

written using attoparsec explicitly only accept strict bytestrings because it is heavily optimized for per-

formance. Still attoparsec o�ers a module to feed these parsers chunk-by-chunk with strict bytestrings

from a lazy bytestring which makes it very comfortable to write low-memory, high-performance parsers

without much boilerplate. It also provides a powerful mechanism for automatic backtracking.

2.4.1 The Header

The �le is split into two main sections, the header and the event stream. Each *.eventlog-�le has to

contain a list of event types which may be emitted by the version of the GHC runtime it was created by.

Figure 2 shows the structure of the header while listing 4 shows the code that parses it.

1 headerParser :: A.Parser Header

2 headerParser = do

3 _ <- A.string $ C.pack "hdrb" -- begin header

4 _ <- A.string $ C.pack "hetb" -- begin event type list

5 typeList <- A.many1 ' eventTypeParser

6 _ <- A.string $ C.pack "hete" -- end header

7 _ <- A.string $ C.pack "hdre" -- end event type list

8 return $ Header typeList

9

10 eventTypeParser :: A.Parser EventType

12



Figure 2: The structure of the header. A square represents a single byte.

11 eventTypeParser = do

12 _ <- A.string $ C.pack "etb\NUL" --begin event type

13 id_ <- word16be <$> A.take 2

14 eventTypeSize <- word16be <$> A.take 2

15 sizeName <- word32be <$> A.take 4

16 name <- A.take (fromIntegral sizeName)

17 sizeExtraInfo <- fromIntegral <$> word32be <$> A.take 4

18 _ <- A.take sizeExtraInfo

19 _ <- A.string $ C.pack "ete\NUL" --end event type

20 let v = eventTypeSize == 0xFFFF

21 return $ EventType id_ (C.unpack name) (if v then Nothing else Just eventTypeSize)

Listing 4: The code for parsing the header.

Each event type consists of three main elements: A unique id (represented by a two byte integer), a length

and a name. Each event type also has an additional �eld describing its name. This �eld was created to

be used in future versions of the runtime but as of the time this thesis was conceived, it always contains

an empty string.

2.4.2 The Event Stream

After successfully consuming the header, the parser interprets the stream of events. The event stream, as

well as the header, is indicated by an associated start and end marker. Each event is composed of three

parts: The id of the type of this event (which can be looked up in the previously parsed header), the

timestamp and the actual content, which is encoded di�erently for every event type. The actual encodings

for each type can be found in the source for the ghc-events parser and the accompanying header �les,

which are also part of the GHC runtime. In general there are two types of events: Fixed sized events,

which have a prede�ned size for every �eld, and variable length encoded events, which carry an additional

�eld describing their length. These are mostly used to encode strings and messages. because the Header

might contain events belonging to a future version of GHC, that are not yet implemented in this parser,

the event types and their accompanying lengths are put into a hash map that can be used to look up the

length of unknown events during parsing. The parser module contains a large list of known event types

13



Figure 3: Graphical representation of the binary event stream

and their parser. Each entry in the list is a tuple containing the id of the event type, and a parser for

that speci�c event. The following is a shortened version of that list:

1

2 knownParsers = [ (0, (\cap timestamp -> do -- CreateThread

3 threadId <- U.parseW32

4 return $ Event timestamp (CreateThread threadId))),

5

6 (1, (\cap timestamp -> do -- RunThread

7 threadId <- U.parseW32

8 return $ Event timestamp (RunThread threadId))),

9 (2, (\cap timestamp -> do -- StopThread

10 threadId <- U.parseW32

11 blockreason <- U.parseW16

12 i <- U.parseW32

13 return $ Event timestamp (StopThread threadId

14 (if (blockreason > maxThreadStopStatus782)

15 then NoStatus

16 else if blockreason ==9

17 then BlockedOnBlackHoleOwnedBy i

18 else mkStopStatus782 blockreason)

19 ))),

20 ...

21 ]

Listing 5: The list of parsers for all known event types.
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After the header has been parsed, the event ids in the header are checked against the ones in the list of

known parsers: If an event id appears in the header but does not occur in the list of known parsers, a

new tuple is created. This new tuple contains the id of the unknown event, and a parser that produces

an UnknownEvent when encountering that id. That parser either consumes a �xed amount of bytes - if

the header advertises that event as �xed in size - or a variable amount - if the header says it has variable

size. This operation is expressed as a fold over the events that appear in the header, the result of which

is used to produce an immutable array, with event ids as keys, and parsers as values.

1 type ParserTable = IA.Array Word16 EParser

2

3 mkParserTable :: Header -> ParserTable

4 mkParserTable h = IA.array (0 ,100) $ foldr addToList knownParsers (eventTypes h)

5 where addToList :: EventType -> [(Word16 , EParser)] -> [(Word16 , EParser)]

6 addToList (EventType id_ _ s) list = if (null $ filter (\x -> fst x == id_)

list)

7 then (id_ , makeUnknownParser id_ s) : (filter (\x -> fst x /= id_) list)

8 else list

Listing 6: Creating an immutable array of parsers.

This array allows for rapid lookup of the correct parser once the event id of the event to be parsed is

known. To parse a single event, the parser then carries out following three steps: Parse the 2 byte event

type, parse the 8 byte timestamp, then pick the correct parser from the ParserTable structure and apply

it to the remaining bytestring:

1 parseSingleEvent :: ParserTable -> Capability -> A.Parser (Maybe Event)

2 parseSingleEvent pt cap = do

3 type_ <- U.parseW16

4 if (type_ == 0xFFFF)

5 then return $ Nothing

6 else do

7 timestamp <- U.parseW64 -- the timestamp

8 event <- (pt IA.! type_) cap timestamp

9 return $ Just event

Listing 7: Parsing of single event.

2.4.3 Speeding up the parser

While the attoparsec library o�ers a fast interface for parsing binary �les, it does not o�er any functionality

to interpret multi-byte bytestrings as representations of encoded numbers. In this case, the parser needed

a (preferably fast) method of interpreting 2,4 and 8 byte long bytestrings as representations of unsigned

16, 32 and 64 bit integers. There is a package on hackage called attoparsec-binary that o�ers exactly this

functionality, but for the purpose of this thesis a slightly faster approach was taken. Because Haskell has

no fast and direct way to convert a bytestring into its numerical equivalent, a small C library was developed

that uses the C standard library to convert bytestrings (or in this case, their equivalent CStrings) into

integral types.

1 #include <stdint.h>
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2 #define _BSD_SOURCE

3 #define __USE_BSD

4 #include <endian.h>

5 #include"fastconvert.h"

6 uint16_t w16be(char* input){

7 return be16toh (*(( uint16_t *) input)); }

8 uint32_t w32be(char* input){

9 return be32toh (*(( uint32_t *) input)); }

10 uint64_t w64be(char* input){

11 return be64toh (*(( uint64_t *) input)); }

Listing 8: Using C to speedily convert bytestrings into unsigned integral types

1 foreign import ccall unsafe "fastconvert.h w16be" w16be :: CString -> IO CUShort

2 foreign import ccall unsafe "fastconvert.h w32be" w32be :: CString -> IO CUInt

3 foreign import ccall unsafe "fastconvert.h w64be" w64be :: CString -> IO CULong

4

5 w16 :: B.ByteString -> Word16

6 w16 bs = case (unsafePerformIO $ C.useAsCString bs w16be) of

7 (CUShort x) -> x

8

9 w32 :: B.ByteString -> Word32

10 w32 bs = case (unsafePerformIO $ C.useAsCString bs w32be) of

11 (CUInt x) -> x

12

13 w64 :: B.ByteString -> Word64

14 w64 bs = case (unsafePerformIO $ C.useAsCString bs w64be) of

15 (CULong x) -> x

16

17 parseW16 :: A.Parser Word16

18 parseW16 = w16 <$> A.take 2

19 {-# INLINE parseW16 #-}

20

21 parseW32 :: A.Parser Word32

22 parseW32 = w32 <$> A.take 4

23 {-# INLINE parseW32 #-}

24

25 parseW64 :: A.Parser Word64

26 parseW64 = w64 <$> A.take 8

27 {-# INLINE parseW64 #-}

Listing 9: FFI bindings for the C conversion functions

The module Bachelor.Util includes FFI bindings to this C library, so that these functions can be called

during parsing. This C-binding approach means that the parser loses some of the safety usually associated

with Haskell. Calling these functions on bytestrings of lengths di�erent from those they were supposed

to be running on will produce false results or might even cause a segfault when running the program.

However, these functions are exclusively called with the according parsing function take (which, when

called as take n, will either return a bytestring of length n or fail the parsing attempt), so that there is

a reasonable expectation for the bytestrings to be of the correct length.
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2.4.4 Testing the parser

After porting the parser to attoparsec, the next step was to test the implementation. For this, hspec [12]

was chosen. Hspec is a testing library for Haskell, that is designed to be similar to Ruby's RSpec, and

which also works with HUnit and QuickCheck. It provides a literate, declarative way to describe tests.

Because parsing �les from disk is a process that inherently involves side-e�ects, it is harder to de�ne

useful testable properties. In this case however, because the code that is tested should (for the most part)

reproduce the behavior of an existing module (namely the parser for the *.eventlog-format de�ned in

GHC-events-parallel), developing test becomes more simple. In the end, the code was tested against

the following two assertions: That the parser will always consume the entire �le it is reading - thereby

returning a successfully parsed EventLog and an empty bytestring. Secondly, that, when run against the

same �le, ghc-events-parallel will produce the same output. Listing 10 shows the high-level code that

calls these two test-functions.

1 main = hspec $ do

2 describe "Bachelor.Parsers" $ do

3 describe "eventLogParser" $ do

4 mapM_ testSingleFile testfiles

5

6 testSingleFile fn = do

7 it ("returns the same result as GHC.RTS.Events.readEventLogFromFile when parsing

" ++ fn) $ do

8 (compareEventLogs fn) `shouldReturn ` (Nothing , Nothing)

9 it ("will consume the entire file " ++ fn) $ do

10 (consume fn)`shouldReturn ` True

Listing 10: Hspec testing code for the parser

A challenge when writing the tests for the parser module was to de�ne the comparison with the ghc-

events-parallel parser in such a way that it would produce meaningful, comprehensible output. While

hspec contains functionality to test the result of a single IO action, it does not contain a straightforward

way of comparing the results of two IO actions. The solution to this problem was to de�ne a meaningful

function of type

1 FilePath -> IO x

where x is a type that either informs the user that the two parsers returned the same result, or contains

some meaningful information about how the test failed. It would, for example, not always be useful to get

a list of all mismatches between the two parsers as a result - if the newly implemented parser misjudged

the length of a single event type, all events in the �le that occur after the �rst instance of this event would

be parsed wrongly, even if their parsers were correctly implemented. It therefore seemed more reasonable

to always terminate the test on the �rst mismatch, and have it displayed as a result, using a function of

the following type:

1 compareEventLogs :: String -> IO ((Maybe Event), (Maybe Event))

Listing 11: Signature of the test function
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Figure 4: Example of a parser bug found by testing with hspec: Di�erent versions of GHC encode the

ThreadStopStatus di�erently.

Which returns (Nothing, Nothing) only if the eventlogs generated by the two parsers are identical, and

otherwise returns the o�ending tuple of events. A tuple of the form (Just e,Nothing) or (Nothing, Just

e) is returned if one of the eventlogs is shorter than the other and has run out of events.

1 compareEventLogs :: String -> IO ((Maybe Event), (Maybe Event))

2 compareEventLogs fn = do

3 --flatten both logs to a single list.

4 ref <- events <$> dat <$> flattenBlocks <$> reference fn

5 cus <- events <$> dat <$> removeBlocks <$> custom fs

6 return $ compareEventList ref cus

7

8

9 compareEventList :: [Event] -> [Event] -> (Maybe Event , Maybe Event)

10 compareEventList [] [] = (Nothing ,Nothing)

11 compareEventList (e:es) [] = ((Just e),Nothing)

12 compareEventList [] (e:es) = (Nothing ,(Just e))

13 compareEventList (e:es) (c:cs) | e==c = compareEventList es cs

14 | e/=c = case (e,c) of

15 ((Event _ StopThread {}) ,(Event _ StopThread {})) ->

16 compareEventList es cs

17 _ -> (Just e, Just c)

18

Listing 12: Comparison function for the two parsers.
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3 Eden-Tracelab

This section will discuss the architecture of Eden-Tracelab, as well as the inner workings of each compo-

nent.

3.1 Architecture

Figure 5: The general architecture of Eden-Tracelab.

Figure 5 shows the overall architecture of Eden-Tracelab. Eden-Tracelab consists of three distinct units:

The parser and event processor, the web service, and the HTML5 viewer.

A detailed description of the parser module can be found in chapter 3. This chapter will give an in-depth

explanation of how parsed events are processed into higher order GUI events, and how those events are

exposed through the web service, and then displayed in an HTML5 viewer.

1 Bachelor.Types

2 -- Defines a set of types to represent the state

3 -- of the Eden runtime , as well as types to

4 -- represent viewable types of higher order events in the

5 -- GUI.

6 Bachelor.SeqParse

7 -- Provides facilities to analyze a *. eventlog file on

8 -- a per -event basis , and to generate higher order events.

9 Bachelor.Parsers

10 -- Provides parsers for Events in *. eventlog files

11 Bachelor.DataBase

12 -- Provides an interface to write GUIEvents into the

13 -- database.

14

Listing 13: Overview of the parser/processor module

Figure 6: Overview of the seqparse-module, which provides facilities for sequentially parsing eventlog

�les, and generating higher order events to be stored in the database
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3.2 Event-Processing

Processing a single *.eventlog-�le and parsing its contents event-by-event is only the �rst step. In order

to be stored on disk and be displayed in Eden-Tracelab these events then need to be converted into higher

order events. The creation of higher order events is necessary for two reasons. Firstly, performance is

increased by generating events that directly correspond to visual objects in Eden-Tracelab, as this ensures

that no additional computation is necessary when displaying trace visualizations. Secondly, creating a

set of events that be can be stored in a simple database schema allows for fast retrieval of visual events

while still allowing for powerful and extensible analysis.

3.2.1 Events Observed

To understand the creation of higher order events in the processing, it is necessary to �rst understand

the events that are observed by Eden-Tracelab, and how these interact with the state of the runtime.

Event E�ect

RunThread tid Set the thread with id tid to Running.

WakeupThread tid othercap Take the previously blocked thread with the id tid and set it to

Running. In the multithreaded runtime, the thread might also be

woken up on another capability - but not in the single-threaded

Eden runtime.

StopThread tid blockreason Set the thread with id tid to Blocked or Runnable, depending on

blockreason. If blockreason is ThreadFinished, remove the thread

from the runtime

ThreadRunnable tid Set the thread with id tid to Runnable.

CreateMachine mid Add the machine with the id mid to the runtime.

KillMachine mid Remove the machine with the id mid from the runtime.

CreateThread tid & Create the thread with the id tid and add it to the process

AssignThreadToProcess tid pid with id pid.

CreateProcess pid Add the process with id pid to the runtime

KillProcess pid Remove the process with id pid from the runtime

Table 2: Events observed by EdenTV and Eden-Tracelab

Most of these events also have secondary e�ects on the runtime. For example, if a process gets killed, all

threads contained in the process will also be killed. The next chapter will document how the parser/pro-

cessor deals with these events.
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3.2.2 Higher Order Events

When examining a screenshot of the current version of EdenTV, one can identify two di�erent types

of visual objects: Colored bars representing a machine, process or thread in a speci�c state at a point

in time for a certain duration, and lines representing message passing between machines. To keep the

amount of disk-IO and processing necessary to interactively display a trace to a minimum, these objects

directly correspond to database entries in Eden-Tracelab. There are a number of di�erences between the

raw events in the event stream of the binary *.eventlog-�le, and the higher order events written to the

database. First, the raw event stream contains events that do not have a duration. They simply describe

a change within the runtime system from one state to another at a �xed point in time. The higher order

events generated by the parsing algorithm have a duration in time. While the raw events do require some

kind of context before they can be displayed in a visualization, the higher order events contain enough

information so that they can be rendered as a single visual piece of information. But before these events

can be written into the database, they �rst have to be created by the parser. Because a small memory

footprint was one of the set goals in the creation of Eden-Tracelab, it was necessary to de�ne a minimum

data structure to represent the inner state of the runtime system.

The algorithm to parse and process the events generated by the parser is as follows (in pseudecode):

WHILE (EVENTS AVAILABLE):

EVENT := GET NEXT CHRONOLOGICAL EVENT

IF (EVENT CHANGES RTSSTATE):

OLDRTSSTATE = RTSSTATE

RTSSTATE = ADJUST RTSSTATE(EVENT)

[HOI] = CREATE HIGHER ORDER EVENTS(OLDRTSSTATE, RTSSTATE)

WRITE [HOI] TO DISK

The most complex part of this process is the creation of higher order events, and the adjustment of the

RTS state in reaction to an event.

The higher order events storable in the database (and displayable in the viewer) are encoded in the

following data type:

1 data GUIEvent = GUIEvent{

2 mtpType :: MtpType ,

3 startTime :: Word64 ,

4 duration :: Word64 ,

5 state :: RunState

6 } | NewMachine MachineId | NewProcess MachineId ProcessId

7 | NewThread MachineId ProcessId ThreadId deriving (Eq , Show)

Listing 14: Encoding of higher order events.

where MtpType is a type for a value that describes whether the event occurred on a thread, process, or

machine, and provides the necessary ids to locate it in the hierarchical structure of the runtime:

1 data MtpType = Machine MachineId

2 | Process MachineId ProcessId
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3 | Thread MachineId ThreadId deriving (Eq , Show)

Listing 15: The type to de�ne where an event occured

3.2.3 Internal Representation of the RTS State

As previously mentioned, the events in the database directly correspond to the visual events displayed

in Eden-Tracelab. Therefore, the data structure to represent the state of the runtime system also has to

correspond to these states. Eden-Tracelab has a set of four states that a machine, process or thread can

be in - represented by four di�erent colors:

1 data RunState = Idle | Running | Blocked | Runnable

2 deriving (Show , Eq)

Listing 16: Run state encoding

Eden-Tracelab, same as the original EdenTV is planned to have three di�erent views: the machine view,

the process view, and the thread view. Two of those are currently implemented in Eden-Tracelab, the

machine view and the process view. The internal representation of the state of the runtime also has to

adhere to this hierarchical structure of machines, processes and threads:

1 data RTSState = RTSState {

2 _rts_machine :: MachineState ,

3 _rts_processes :: ProcessMap ,

4 _rts_threads :: ThreadMap

5 } deriving Show

Listing 17: Data structure describing the runtime state

Note that the naming of the �elds within those record types is slightly unwieldy. This is due to two

reasons: First, these data types are subject to the automatic creation of lenses[13] using the makeLenses

command, which requires them to start with an underscore. Secondly, as record �eld names in Haskell

are functions in a global namespace, records in the same module who share �eld names have to avoid

name collisions. In this case, this is accomplished by pre�xing each �eld name with a pre�x, followed by

another underscore.

The ProcessMap and ThreadMap types are strict hash maps from ThreadIds to ThreadStates (or

ProcessId to ProcesState respectively:)

1 type ThreadMap = M.HashMap ThreadId ThreadState

2 type ProcessMap = M.HashMap ProcessId ProcessState

Listing 18: Collections of threads and processes.

In order to keep track of the running state of a machine -whether it is Idle, Runnable, Running or

Blocked- the MachineState data type contains a number of counter �elds, representing the number of

Runnable, Running or Blocked processes within the machine. The PreMachine constructor ensures that

a valid state of the runtime can be initialized before the �rst machine has been started.

1 data MachineState = MachineState {

2 _m_state :: RunState ,
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3 _m_timestamp :: Timestamp ,

4 _m_pRunning :: Int ,

5 _m_pRunnable :: Int ,

6 _m_pBlocked :: Int ,

7 _m_pTotal :: Int

8 } | PreMachine deriving Show

Listing 19: Data structure describing the machine state

The data type describing the state of a single process works in almost the same way, with counters for the

threads belonging to this process. In addition to the �elds similar to the MachineState it also contains

a �eld called _p_parent, which holds the MachineId of the parent machine.

1 data ProcessState = ProcessState {

2 _p_parent :: MachineId ,

3 _p_state :: RunState ,

4 _p_timestamp :: Timestamp ,

5 _p_tRunning :: Int ,

6 _p_tRunnable :: Int ,

7 _p_tBlocked :: Int ,

8 _p_tTotal :: Int

9 } deriving (Show , Eq)

Listing 20: Data structure describing the process state

The ThreadState is similar to the state of a process, but because threads do not contain any 'smaller'

entities than themselves, they do not need any counter variables.

1 data ThreadState = ThreadState {

2 _t_parent :: ProcessId ,

3 _t_state :: RunState ,

4 _t_timestamp :: Timestamp

5 } deriving Show

Listing 21: Data structure describing the thread state

3.2.4 From Raw Events to Higher Order Events

After successfully de�ning a useful representation of the runtime system as Haskell data types, it becomes

necessary to consider how a single event would in�uence the runtime system. A single event has two non-

exclusive possibilities of interacting with the runtime system: It can change the runtime state or it can

generate one or more higher order GUIEvent to be written into the database. All events that are observed

by Eden-Tracelab change the state of the runtime system, but not all of them generate higher order events.

The signature of the function that handles these events is therefore:

1 type Handler = RTSState -> AssignedEvent -> (RTSState ,[ GUIEvent ])

Listing 22: Signature of the event handling function

The AssignedEvent type is a wrapper around the Event type from GHC.Events.Parallel which adds

some additional information, speci�cally the capability the event was generated by, and the machine it

is from.
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1 data AssignedEvent = AssignedEvent {

2 _event :: Event ,

3 _machine :: MachineId ,

4 _cap :: Int

5 }

Listing 23: Wrapping the event type

Every event interacts with the runtime in a di�erent way, and has a di�erent amount of GUIEvents it

potentially generates. To demonstrate how an event might interact with the runtime system, Fig. 7 shows

how a RunThread event might interact with the runtime system, and which events it might generate. This

example was chosen because events that interact with the state of a thread introduce the most complexity

into the handling of events: They have the potential to change the state of their parent processes, which

in turn might cause the parent machine to change its run state.
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(a) The runtime system state contains a single machine, with a single process. The

process contains two threads, one blocked, one runnable. The next event being that

the parser is going to read is a RunThread event for the thread t1.

(b) The state of the thread is adjusted, and a single GUIEvent is generated, describing

the time from 100 to 400 where the state was runnable.

(c) The process p1 now has a single running thread, and is therefore running. The

state of the process has to be changed, and another GUIEvent has to be created,

describing the runnable state of the process from time 100 to 400.

(d) The machine m1 now has a single running process, and is therefore running. The

state of the machine has to be changed, and another GUIEvent has to be created,

describing the runnable state of the machine from time 100 to 400.

Figure 7: A RunThread event interacts with the runtime system and generates three GUIEvents, as well

as a new runtime state.
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A number of events behaves in the same way as the RunThread Event, by changing the state of a single

thread, potentially causing a chain of state changes to 'bubble up' through the runtime system. All of

these events are handled by the same function, namely changeThreadState.

1 changeThreadState :: RTSState -> MachineId -> ThreadId -> RunState -> Timestamp

2 -> (RTSState , [GUIEvent ])

3 changeThreadState rts mid tid state ts =

4 if M.member tid (rts^. rts_threads)

5 then let

6 oldThread = (rts^. rts_threads) M.! tid

7 oldState = oldThread ^. t_state

8 pid = oldThread ^. t_parent

9 oldProcess = (rts^. rts_processes) M.! pid

10 (newThread ,tEvent) = setThreadState mid tid oldThread ts

11 state

12 (newProcess ,pEvent) = updateThreadCountAndProcessState

13 mid pid ts oldProcess (Just oldState) (Just state)

14 oldProcessState = oldProcess ^. p_state

15 newProcessState = newProcess ^. p_state

16 (newMachine ,mEvent) = updateProcessCountAndMachineState mid ts

17 (rts^. rts_machine) (Just oldProcessState)

18 (Just newProcessState)

19 rts ' = set rts_machine newMachine $

20 set (rts_threads .(at tid)) (Just newThread) $

21 set (rts_processes .(at pid)) (Just newProcess) $ rts

22 in (rts ', mList [tEvent , pEvent , mEvent ])

23 --ignore 'homeless ' threads.

24 else (rts ,[])

Listing 24: A thread changes its state as a result of an event.

This code makes heavy use of lenses to deal with the manipulation of the internal parser state. Addition-

ally, all identi�ers are chosen in a very literal fashion � without (hopefully) being too verbose � to keep

the code readable. Similar functions exist for all other events that are observed by the event processor.
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3.2.5 Database Schema

Figure 8 shows the database schema used by the event processor to store event data.

Figure 8: The schema of the event database.

The database schema is in Third Normal Form, and separately represents the hierarchical structure of the

traces contained within the database as well as the events belonging to each entity. The traces, machines,

processes and threads relations contain the structure of each trace: Depicting which trace contains which

machines, which machines contain which processes, and which processes contain which threads. Note

that the naming here is slightly confusing: In the context of each *.eventlog-�le, each machine, process

and thread has a unique id. But due to the fact that each trace contains multiple *.eventlog-�les, and

the database contains multiple traces, these ids cannot be used as primary keys in the database. The

machine_id, process_id and thread_id columns contain a unique auto-incrementing primary key distinct

from the previously mentioned ids within the *.eventlog-�les. Those keys are being stored in the columns

named num. The starttime columns of each event relation are also indexed to increase performance of

event retrieval.

3.2.6 Saving Higher Order Events into the Database.

The process of inserting higher order events into the database can best be understood by looking at the

main data structure of the Bachelor.DataBase module.

1 bufferlimit = 10000

2

3 data DBInfo = DBInfo {

4 db_threadbuffer :: [(MachineId , ThreadId , Timestamp , Timestamp , RunState)],

5 db_processbuffer :: [(MachineId , ProcessId , Timestamp , Timestamp , RunState)],

6 db_machinebuffer :: [(MachineId , Timestamp , Timestamp , RunState)],

7 db_traceKey :: Int ,

8 db_machines :: M.HashMap MachineId Int ,

9 db_processes :: M.HashMap (MachineId ,ProcessId) Int ,
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10 db_threads :: M.HashMap (MachineId ,ThreadId) Int ,

11 db_connection :: Connection

12 }

Listing 25: The DBInfo structure stores the connection to the database as well as lists of not yet inserted

events and a set of primary keys

This data structure consists of three main parts: a set of lists, which serve as bu�ers for events before

they are written to the database, a set of maps of primary keys for machines, processes and threads, as

well as a single key identifying the trace in the database, and lastly the connection to the database.

The bu�ers exist for performance reasons: Batch insertion into the database is about a magnitude faster

than inserting each event on its own. The reason for the existence of these hash maps is related to the

database schema laid out in the previous chapter: Because the machine id stored in the *.eventlog-�le

does not identify the machine in the database - there might be an arbitrary number of machines belonging

to other traces having the same id - an additional key is created in the database. This key is needed

when a machine event has to be inserted into the database, therefore it is kept in the map db_machines.

The same is true for processes and threads: The tuple (machine id, process id) identi�es a process in a

trace, but not in the database, while the tuple (machine id, thread id) identi�es a thread in the trace, but

not in the database. The primary keys for processes and threads are being stored with these tuples as keys.

The main function of the database module is the following:

1 insertEvent :: DBInfo -> GUIEvent -> IO DBInfo

2 insertEvent dbi g@(NewMachine mid) = insertMachine dbi mid

3 insertEvent dbi g@(NewProcess mid pid) = insertProcess dbi mid pid

4 insertEvent dbi g@(NewThread mid pid tid) = insertThread dbi mid pid tid

5 insertEvent dbi g@(GUIEvent mtpType start dur state) =

6 case mtpType of

7 Machine mid -> case (( length $ db_machinebuffer dbi) >= bufferlimit) of

8 True -> do

9 putStrLn "inserting Machine events"

10 insertMachineState dbi

11 False -> return dbi {

12 db_machinebuffer = (mid ,start ,dur ,state) : db_machinebuffer dbi

13 }

14 Process mid pid -> case (( length $ db_processbuffer dbi) >= bufferlimit) of

15 True -> do

16 putStrLn "inserting Process events"

17 insertProcessState dbi

18 False -> return dbi {

19 db_processbuffer = (mid ,pid ,start ,dur ,state) : db_processbuffer dbi

20 }

21 Thread mid tid -> case (( length $ db_threadbuffer dbi) >= bufferlimit) of

22 True -> do

23 putStrLn "inserting Thread events"

24 insertThreadState dbi

25 False -> return dbi {

26 db_threadbuffer = (mid ,tid ,start ,dur ,state) : db_threadbuffer dbi
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27 }

Listing 26: Inserting events into the database.

Note that this function distinguishes between two major types of events: Events with constructors

NewMachine, NewProcess, NewThread are inserted into the database immediately. This is due to the

fact that they create new primary keys for machines, processes or threads, which might be needed when

inserting other events. For example, the event NewMachine 2 should be inserted before any event on

machine 2 is being inserted, so that the primary key already exists when such an event occurs. The

second type are events that do not describe the structure of the trace, but directly correspond to events

shown in the viewer. Those events do not create any new keys in the database, and therefore they do not

have to be inserted immediately. Instead, they can be inserted into a bu�er, and are only inserted when

the bu�er size exceeds a threshold: In this case, 10000 events. The following function performs insertion

when the bu�er of thread events has reached the limit:

1 insertThreadState :: DBInfo -> IO DBInfo

2 insertThreadState dbi = do

3 let conn = db_connection dbi

4 inlist = map (\(mid ,tid ,start ,duration ,state) ->

5 (( db_threads dbi) M.! (mid ,tid), start , duration , stateToInt state))

6 $ db_threadbuffer dbi

7 executeMany conn insertThreadStateQuery inlist

8 return dbi {db_threadbuffer = []}

9

10 insertThreadStateQuery :: Query

11 insertThreadStateQuery =

12 "Insert into thread_events(thread_id , starttime , duration , state)\

13 \values( ? , ? , ? , ? );"

Listing 27: Inserting a thread event into the database.

The functions for inserting events regarding events occurring on processes and machines are very similar.

Note that the primary key is looked up in the hash map upon insertion, and that the state is encoded as

an integer.

The function for inserting a new thread into the database shows how a a new primary key is inserted into

the threads table, and how it is then subsequently stored in the database module:

1 insertThreadQuery :: Query

2 insertThreadQuery =

3 "Insert into Threads(num , process_id)\

4 \values( ? , ? ) returning thread_id;"

5

6 insertThread :: DBInfo -> MachineId -> ProcessId -> ThreadId -> IO DBInfo

7 insertThread dbi mid pid tid = do

8 let conn = db_connection dbi

9 processKey = (db_processes dbi) M.! (mid ,pid)

10 threadKey <- head <$> query conn insertThreadQuery (tid , processKey)

11 case threadKey of

12 Only key -> do
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13 return $ dbi {

14 db_threads = M.insert (mid ,tid) key (db_threads dbi)

15 }

16 _ -> error "thread insertion failed"

Listing 28: Inserting a new thread into the database

To ensure that every event has been written when the event processing �nishes, the database module

contains the function finalize that writes the contents of all bu�ers into the database.

1 finalize :: DBInfo -> IO DBInfo

2 finalize dbi = do

3 dbi <- insertMachineState dbi

4 dbi <- insertProcessState dbi

5 dbi <- insertThreadState dbi

6 return dbi

Listing 29: Inserting remaining events into the database

3.2.7 Processing an Entire Trace

This chapter explains how all the previously introduced components in the event processor work together.

This happens in the Bachelor.SeqParse module which takes the iterative parser, the creation of higher

order events and the database facilities to analyze a trace and write all the created higher order events

to the database. The main function in this module is the following:

1 run :: FilePath -> IO()

2 run dir = do

3 -- filter the directory contents into eventlogs.

4 paths <- filter (isSuffixOf ".eventlog") <$> Dir.getDirectoryContents dir

5 -- prepend the directory.

6 let files = map (\x -> dir ++ x) paths

7 -- extract the machine number.

8 mids = map extractNumber paths

9 -- create a parserState for each eventLog file.

10 pStates <- zip mids <$> mapM createParserState files

11 -- connect to the DataBase , and enter a new trace , with the current

12 -- directory and time.

13 conn <- DB.mkConnection

14 PG.withTransaction conn $ do

15 dbi <- DB.insertTrace conn dir

16 --parse the events belonging to a single machine , and

17 --insert the created higher order events into the database

18 dbi <- foldM handleMachine dbi pStates

19 dbi <- DB.finalize dbi

20 return ()

Listing 30: Processing an entire trace.

Note that this function takes a directory as an argument, not a *.parevents �le. Eden traces are stored

as *.parevent �les, which are a zip archive containing the *.eventlog-�le of all cores/machines included

in the trace. Originally, the parser was supposed to lazily read �les from the zip archive directly. However,
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it turned out to be di�cult to �nd a library that lazily reads �les from zip archives with a low memory

footprint. In the current version, *.parevent-�les have to be unzipped by hand into a directory, which

can then be passed to the parser/event processor. Next, the parser opens each �le as a lazy bytestring

(in the createParserState function) and attaches an empty runtime system state. The relevant data

types can be seen here:

1 type CapState = (LB.ByteString , Maybe Event)

2 data ParserState = ParserState {

3 _p_caps :: CapState , -- the 'system ' capability.

4 _p_cap0 :: CapState , -- capability 0.

5 _p_rtsState :: RTSState , -- the inner state of the runtime

6 _p_pt :: ParserTable -- event types and their parsers ,

7 -- generated from the header.

8 }

Listing 31: Data structure to describe the parser state

As previously discussed, the parser state encompasses a lazy bytestring for each capability (system capa-

bility and capability #0) as well as the chronologically latest event from both.

After such a state has been generated for each *.eventlog-�le �le, a database connection is established,

and the �les are parsed and processed one by one. The relevant function in the code shown above is the

handleMachine function, which is a thin wrapper around the parseSingleEventLog function.

1 handleMachine :: DB.DBInfo -> (MachineId , ParserState) -> IO DB.DBInfo

2 handleMachine dbi (mid ,pstate) = do

3 print $ "Processing Machine no ." ++ (show mid)

4 dbi <- parseSingleEventLog dbi mid pstate

5 return dbi

6

7 {-

8 - This is the main function for parsing a single event log and storing

9 - the events contained within into the database.

10 - -}

11 parseSingleEventLog :: DB.DBInfo -> MachineId -> ParserState -> IO DB.DBInfo

12 -- event blocks need to be skipped without handling them.

13 -- System EventBlock

14 parseSingleEventLog dbi mid pstate@(ParserState

15 (bss ,evs@(Just (Event _ EventBlock {})))

16 _ rts pt) = parseSingleEventLog dbi mid $ parseNextEventSystem pstate

17 -- Cap 0 EventBlock

18 parseSingleEventLog dbi mid pstate@(ParserState

19 _ (bs0 ,e0@(Just (Event _ EventBlock {})))

20 rts pt) = parseSingleEventLog dbi mid $ parseNextEventNull pstate

21 -- both capabilities still have events left. return the earlier one.

22 parseSingleEventLog dbi mid pstate@(ParserState

23 (bss ,evs@(Just es@(Event tss specs)))

24 (bs0 ,ev0@(Just e0@(Event ts0 spec0)))

25 rts pt) = if (tss < ts0)

26 then do

27 let aEvent = AssignedEvent es mid (-1)

28 (newRTS , guiEvents) = handleEvents (pstate ^. p_rtsState) aEvent
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29 pstate ' = set p_rtsState newRTS $ pstate

30 dbi <- foldM DB.insertEvent dbi guiEvents

31 parseSingleEventLog dbi mid $ parseNextEventSystem pstate '

32 else do

33 let aEvent = AssignedEvent e0 mid 0

34 (newRTS , guiEvents) = handleEvents (pstate ^. p_rtsState) aEvent

35 pstate ' = set p_rtsState newRTS $ pstate

36 dbi <- foldM DB.insertEvent dbi guiEvents

37 parseSingleEventLog dbi mid $ parseNextEventNull pstate '

38

39 -- no more system events.

40 parseSingleEventLog dbi mid pstate@(ParserState

41 (bss ,evs@Nothing)

42 (bs0 ,ev0@(Just e0@(Event ts0 spec0)))

43 rts pt) = do

44 let aEvent = AssignedEvent e0 mid 0

45 (newRTS , guiEvents) = handleEvents (pstate ^. p_rtsState) aEvent

46 pstate ' = set p_rtsState newRTS $ pstate

47 dbi <- foldM DB.insertEvent dbi guiEvents

48 parseSingleEventLog dbi mid $ parseNextEventNull pstate '

49 -- no more cap0 events.

50 parseSingleEventLog dbi mid pstate@(ParserState

51 (bss ,evs@(Just es@(Event tss specs)))

52 (bs0 ,ev0@Nothing)

53 rts pt) = do

54 let aEvent = AssignedEvent es mid (-1)

55 (newRTS , guiEvents) = handleEvents (pstate ^. p_rtsState) aEvent

56 pstate ' = set p_rtsState newRTS $ pstate

57 dbi <- foldM DB.insertEvent dbi guiEvents

58 parseSingleEventLog dbi mid $ parseNextEventSystem pstate '

59 -- no more events.

60 parseSingleEventLog dbi mid pstate@(ParserState

61 (bss ,evs@Nothing)

62 (bs0 ,ev0@Nothing)

63 rts pt) = return dbi

Listing 32: Parsing an entire eventlog

As can be seen here, the main work being done by this function is �rst to decide which capability to accept

the next event from, so that chronological order is preserved. After that, the event is being processed,

with the handleEvents function (see section 'Higher Order Events'). The newly generated higher order

events are then passed on to the database handler, which decides when to input them into the database.

Lastly, this process is repeated recursively with the next event, until the end of this *.eventlog-�le has

been reached. After all eventlogs have been treated in this manner, the run function calls finalize on

the database, to insert any events that are still remaining in the bu�er. At this point, the entire trace

has been analyzed and fed into the database, so that it can be retrieved by the web service and viewed

using the HTML5 viewer.
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3.3 Web Service

After the higher order events have been written into the database, they need to be served to the HTML5

viewer. To accomplish this, a web service was developed using the Scotty web framework. This chapter

documents the architecture of this web service, as well as the API serving the event data as JSON.

3.3.1 API

The desired feature set of the Eden-Tracelab viewer puts a series of requirements on the API. First, to

be able to choose a previously created trace analysis from the database when starting up the viewer,

a method for retrieving information about existing traces is needed. Before event information about

a speci�c trace can be extracted, the overall structure of the trace needs to be retrieved. Speci�cally,

the following details need to be established: the number of machines that the trace contains; their ids;

the processes they contain; their ids; the threads they contain; their ids. This information is kept in

the HTML5 viewer to reduce the amount of processing necessary when dynamically viewing a trace and

loading new data from the web service via AJAX-queries. Then, when viewing a trace, the speci�c events

for each of the three views need to be extracted respectively. It should be noted that at this time only

the �rst two views have been implemented, and that therefore there are no API calls for retrieving thread

view data. Each of these commands needs to be able to accept a set of parameters. To constrain the

number of events rendered, and thereby reducing processing and rendering time, the web service needs

to be able to only return events longer than a given duration and intersecting with a given time window.

The parameters are therefore: a starting time of a time window, an according end time, and a minimum

duration.

3.3.2 API Methods and Parameters

The API methods of the web service can be split into two main categories: Methods that retrieve metadata

about the available traces - which traces are available and what their internal structure is. The second

category of methods is used to retrieve higher order events which can be directly rendered as blocks of

state within the HTML5 viewer. The following table shows all currently available API calls:
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Method URL Description Parameters

POST /traces Returns a list of traces

that have already been

analyzed

<None>

POST /traceinfo Returns the structure of

all machines, processes

and traces that occurred

during the runtime of this

trace.

id : the trace_id of the trace

POST /duration Returns the length of the

entire trace in nanosec-

onds.

id : the trace_id of the trace

POST /mevents A list of machine events

matching the given pa-

rameters.

id : the trace_id of the trace

start : the start time in ns

end : the end time in ns

minduration : the minimum duration

of events to retrieve in ns

POST /pevents A list of process events

matching the given pa-

rameters.

id : the trace_id of the trace

start : the start time in ns

end : the end time in ns

minduration : the minimum duration

of events to retrieve in ns

Table 3: API calls

3.3.3 Example API Calls

The following example API calls demonstrate the JSON returned by the web service. Each example

includes the URL being called, the parameters being passed, and an example result. The JSON has been

pretty-printed to better illustrate its structure.
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URL parameters

/traces None

1 [

2 {

3 "date": "2015 -09 -22 12:29:04.301641" ,

4 "filename ": "/home/basti/bachelor/traces/mergesort_small /",

5 "id": 5

6 },

7 {

8 "date": "2015 -09 -22 13:27:55.0637" ,

9 "filename ": "/home/basti/bachelor/traces_lukas/bitonic_12_10000000_8_+RTS_ -N4_ -

qQ500M_ -ls_ -RTS/",

10 "id": 6

11 }

12 ]

Listing 33: Example output for the /traces API call

Returns an array of trace objects, each containing a unique id, a �lename of the directory they were

created from, and their creation date.

URL parameters

/traceinfo id=8

1 [

2 [ 1,

3 [

4 [

5 1, [ 1, 2, 7 ]

6 ],

7 [

8 2, [ 3, 4, 9 ]

9 ],

10 ]

11 ]

12 ]

Listing 34: Example output for the /traceinfo API call

Returns an array of nested arrays, that represent the structure of the machine-process-thread hierarchy

of the trace. The result above describes a trace that contains a single machine with id 1, which contains

two processes: One with id 1 - containing threads 1, 2 and 7 - and another process with id 2 - containing

thread 3,4 and 9
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URL parameters

/mevents id=1, start=0, end=10000000, minduration=10

The start, end and duration parameters are in nanoseconds.

1 [

2 [

3 2,

4 2021,

5 831954433 ,

6 0

7 ],

8 [

9 7, // machine id

10 2021, // start time in nanoseconds

11 832017342 , // duration in nanoseconds

12 0 //state

13 ]

14 ]

Listing 35: Example output for the /mevents API call

Returns an array of arrays. The inner arrays each represent an event. The �rst entry identi�es the

machine they belong to, the next entry is the starting time, the third entry provides the duration of the

event, and the last entry is an encoding of the state for that time.

URL parameters

/pevents id=1, start=0, end=10000000, minduration=10

The start, end and duration parameters are in nanoseconds.

1 [

2 [

3 1,

4 1,

5 1806995 ,

6 7995,

7 3

8 ],

9 [

10 1, // machine id

11 1, // process id

12 1814990 , //start time in nanoseconds

13 997500 , // duration in nanoseconds

14 1 //state

15 ]

16 ]

Listing 36: Example output for the /pevents API call
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Returns an array of arrays. The inner events represent a process event. Similar to /mevents, but also

contains the id of the process.

3.3.4 Implementation

As previously noted, the web service is implemented using the Scotty web framework. The entire API is

implemented in the main function of the module containing the web service. The central part of every

Scotty application is the scotty function, which takes a port number to start a web server on, and a

ScottyM() Action - a monad to describe requests and responses in. The following code is a stripped down

version of the code that serves the HTML5 viewer on the Scotty server:

1 main = do

2 conn <- connect myConnectInfo

3 scotty 3000 $ do

4 get "/" $ do

5 file "./view/index.html"

Listing 37: Serving index.html

The get function answers a get request on the speci�ed path, in this case the root of the web server,

and the �le function responds with the speci�ed �le, in this case the index.html �le which contains

the HTML for the HTML5 viewer. conn is the connection to the postgres database, which is used to

handle the previously described API calls. Similar to the event processor, the API web service uses the

postgresql-simple [14] module to interact with the database. To explain how the API is implemented,

the following documents the implementation of a single API call, the /mevents function. (Note that this

again is a stripped down version.)

1 main = do

2 conn <- connect myConnectInfo

3 scotty 3000 $ do

4 post "/mevents" $ do

5 id <- param "id"

6 start <- param "start"

7 end <- param "end"

8 minduration <- param "minduration"

9 evs <- liftIO $ getMachineEvents conn id start end minduration

10 json $ evs

Listing 38: Implementation of the /mevents API call

Similar to the get function, the post function answers an http request on a speci�ed path. In this case,

it handles a POST request on the path "/mevents". The param function extracts a named parameter

from the POST request. After extraction of the parameters, the getMachineEvents function is called to

query the desired events from the database:

1 getMachineEvents conn trace_id start end minduration = do

2 evs <- query conn [sql|SELECT NUM , STARTTIME , DURATION , STATE FROM (MACHINE_EVENTS

JOIN MACHINES

3 ON MACHINE_EVENTS.MACHINE_ID = MACHINES.MACHINE_ID)

4 WHERE ? <= (STARTTIME + DURATION)
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5 AND DURATION >= ?

6 AND STARTTIME <= ?

7 AND MACHINES.MACHINE_ID in

8 (SELECT MACHINE_ID FROM MACHINES WHERE

9 TRACE_ID = ?)|] (start , minduration , end , trace_id)

10 return evs

Listing 39: Retrieving machine events from the database

This function uses the SQL quasiquoters included in postgresql-simple to directly embed SQL in the

Haskell source. The json function, which answers the request by encoding its argument in JSON, uses

the powerful aeson [15] JSON library for encoding.

3.4 HTML5 Viewer

The HTML5 viewer for graphical inspection of the generated traces was not developed in Haskell, but

rather written in Co�eeScript [16], and then compiled to JavaScript. This choice was made because the

ecosystem of GUI toolkits in Haskell is (in the authors opinion) still lacking, and building larger interfaces

in Haskell can be time intensive. This is especially true when a hardware-accelerated context is needed

while the same thing is easily achievable in modern browsers.

Several di�erent technologies were chosen for the developed of the graphical interface. The web service

was developed in Co�eeScript, a "little language that compiles into JavaScript" [16]. Unlike JavaScript,

Co�eeScript is safer and more elegant to develop in, as it eliminates some of the most common pitfalls

when developing JavaScript (such as scoping, missing var declarations, and use of the ==-operator). In

addition to these safety features, Co�eeScript is also often shorter and more readable than the equivalent

JavaScript code. The added syntactic sugar also exposes the functional parts of JavaScript. Because

Co�eeScript compiles directly to JavaScript, it can seamlessly interoperate with any given JavaScript

library. For this thesis, two of those libraries where chosen: D3.js [17] for generating visualizations of

data, and jQuery [18] for modifying the DOM and generating AJAX-queries.

D3.js stands for Data-Driven Documents, a library for generating data visualizations in JavaScript. It

o�ers functionality for creating data-driven graphics in the browser. While the default rendering target

within D3 is svg (scalable vector graphics), its data-binding methods can also be used to create graphics

on other targets, such as the HTML5 canvas. The tool developed in this thesis renders trace visualizations

on an HTML5 canvas. This decision was made after discovering that rendering multiple 10,000 svg objects

will, on a current browser still takes a noticeable amount of time, and manipulating this amount of objects

within the DOM (as when zooming into a trace visualization) will create a laggy and unresponsive UI.

However, when the trace events are displayed on a HTML5 canvas, the renderings themselves do not

have to be kept and manipulated within in the DOM - they are simply redrawn as soon as the user

performs any interactions with the interface. Due to the fact that the canvas object in most browsers is

heavily optimized for rendering performance, this creates a far smoother UI experience than the direct

svg approach.
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Figure 9: Screenshot of the HTML5 viewer

3.4.1 UI Overview

Figure 9 shows the interface of the newly developed tool. On startup, the user is presented with a

selection of previously analyzed traces, marked with the number 1 in the above screenshot. This list can

be refreshed by pressing the update button - for example when a new trace has been inserted while the

HTML5 viewer was running. Selecting a trace, and clicking the 'load trace' button will load a visualization

of the selected trace. By default, the trace loads in the machine view. This can be changed with the

buttons marked by the number 2. At this point, only the �rst two views have been implemented, clicking

the third one will bring up an alert. The number 3 marks the level detail setting which will be explained

below. The actual trace visualization area is marked by the number 4. The trace visualization is a graph

with the running time of the program on the x axis, and the di�erent machines or processes (depending

on the view) on the y axis. Each colored block represents a period of time where the machine or process

was at a speci�c state. The color coding of the states is identical to EdenTV, and can be seen in table

1. When the user moves her cursor over a trace, a vertical line appears at the cursor position, allowing

for easy comparison between machines or processes. The time in nanoseconds at that speci�c position

is displayed to the right of the cursor. After the trace is loaded, the user can zoom into the selected

trace and move it horizontally. This can be accomplished using panning-/ and zooming gestures. On a

PC the user would simply use the scroll wheel of her mouse for zooming and dragging the visualization

while the left mouse button is pressed for panning. Because the user interface is implemented using D3.js

'behavior' system, zooming and panning gestures can also be input by multi touch-gestures on phones

and tablets, dragging the trace from left to right, or moving two �ngers apart to zoom.

39



(a) On �rst load, Eden-Tracelab presents the user with a selection of previously analyzed traces.

(b) Selecting a speci�c trace and pressing 'load trace' will load a visualization of that trace.

Figure 10: Loading a trace visualization in Eden-Tracelab
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3.4.2 Level of Detail

The interface also o�ers the option to specify a desired level of detail, by adjusting it with a spin input

and pressing the button next to it. To understand what this button does, one has to understand how

Eden-Tracelab handles event loading to achieve performance. By default, the level of detail is set to one.

This means that the HTML5 interface will only request events from the web service that, when drawn,

would have a length of a single pixel or longer. Setting the level of detail to a value of n will cause the

viewer to request all events which correspond to a duration longer or equal to 1/nth of a pixel. The exact

formula for the minimum duration t of events to be requested is therefore:

t =
t1 − t0

WIDTH ∗ n

Where t0 is the starting time of the currently displayed axis, t1 is the ending point of the currently

displayed axis, and WIDTH is the width of the interface in pixels.

(a) Trace visualization of a program running a N-body simulation on 32 cores. At a level of detail of 1 it is obvious

that there are distinct moments in time where all cores were blocked. However, it is completely unclear what

their state was in the meantime.

(b) Setting the level of detail to 10 reveals that the machines were mostly running in between being blocked.

Figure 11: Demonstrating the level of detail setting

While simply leaving the level of detail at 1, and bene�ting from the performance improvements within

the viewer might often be enough, in some situations it is desirable to manually set the level of detail

to a desired value. Eden-Tracelab o�ers the ability to set the level to any value smaller or equal to 100.

When the performance constraints forbid further incrementing the level of detail above a certain value, it

41



Figure 12: Zooming in to display smaller events. This is the same trace as in Figure 11, but note that

the level of detail is still at 1.

is still possible to investigate sections of the trace by zooming into them, and revealing previously unseen

events. Figure 11 shows how to inspect a trace visualization by increasing the level of detail, while �gure

12 shows the same trace after zooming on a previously white section, without previously incrementing

the level of detail.

3.4.3 Interface Behavior

To make the interaction with the interface a smooth experience, and to keep the number of requests

generated as small as possible, the following behavior was developed: Whenever a request is executed,

the interface is locked, and the user cannot provide any further gestures. A loading animation is displayed

until the request is returned and handled. This is also true when the request occurred not due to a panning

or zooming gesture, but because the user loaded a new trace, or changed the level of detail. This ensures

that even when interacting with large traces at high levels of detail, the interface will never lag behind

a large number of requests bogging down the database. Because with this rule alone the interface would

freeze with every zooming gesture and thus provide a very uncomfortable user experience an additional

rule to ensure a more friction-free experience was implemented: When an input gesture occurs, there is

no immediate request send. Instead, a timer is started - If in the next 500ms no additional request is

generated, the request is send out and the event data is refreshed. If another event does occur during

these 500ms, the timer is reset. This ensures that the user can chain arbitrary zooming and panning

gestures to achieve a desired view, without the interface freezing out. Only then the desired data is being

loaded. Regardless of whether a request is generated or not, the interface is redrawn on every zooming

event, with the available data. This ensures that when a user zooms in on a region, she can still see the

less granular data of the lower zoom level before the new data is loaded.

1 timer = null

2

3 reload = () ->

4 lock_ui ()
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Figure 13: The UI is blocked when waiting for a request to complete.

5 domain = x.domain ()

6 params =

7 id : trace_metadata.id

8 start : Math.floor domain [0]

9 end : Math.floor domain [1]

10 minduration : calculate_minimum_duration(domain [0], domain [1])

11 $.post ("/ mevents", params , (data , status) ->

12 if status != "success"

13 alert "failed to load machine events ."

14 unlock_ui ()

15 return

16 mevents = data

17 draw()

18 unlock_ui ()

19 )

20

21 zoomHandler = () ->

22 if timer != null

23 clearTimeout(timer)

24 domain = x.domain ()

25 x.domain(domain)

26 xAxisContainer.call(xAxis)

27 if ui_locked

28 return

29 #get the new minimum and maximum x-coordinates.

30 timer = setTimeout(reload , ZOOM_TIMEOUT)

31 draw()

32 return

Listing 40: Implementation of the UI timeout
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4 Comparison with EdenTV

This section takes an example trace, and shows the di�erences and similarities between EdenTV and

Eden-Tracelab. Figure 14 shows the machine view of the trace generated by a mergesort algorithm run

on eight cores. The overall structure of both traces looks similar: The creation date and lifetime of the

machines are identical in both images. There also seems to be a complete match between the sections

that both tools consider to be blocked. Yet, some variation exists: Eden-Tracelab considers some sections

as Runnable that EdenTV displays as Running. The reason for this probably lies in the parser code of

Eden-Tracelab: Di�erent versions of the GHC runtime encode the blockReason �eld in the StopThread

event di�erently (This was not part of the original speci�cation, and was caused by a bug in a speci�c

GHC version). Eden-Tracelab currently only parses events created by the GHC-7.8.2 runtime correctly

(which is not the current version of GHC, but the version of GHC that the current version of Eden

is based on.) Earlier and later versions of GHC will have di�erent encodings of the StopReason, and

therefore Eden-Tracelab will interpret these reasons wrongly.

Another di�erence between EdenTV and Eden-Tracelab is that EdenTV does not allow for arbitrarily

deep zooming, while Eden-Tracelab was speci�cally developed to include this feature. Figure 17 illustrates

this feature by showing �ve screenshots of the same trace at di�erent zoom level, revealing more and more

detail.
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(a) The mergesort trace in EdenTV

(b) The mergesort trace Eden-Tracelab

Figure 14: The same trace as seen in EdenTV and Eden-Tracelab
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(a) EdenTV zoomed into the interval between 0.9s and 0.95s

(b) The same view in Eden-Tracelab

Figure 15: The same trace as seen in EdenTV and Eden-Tracelab
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(a) Processes belonging to the same machine will be grouped, and the background of those groups is shaded to

tell them apart more easily

Figure 16: Comparison of process views.
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Figure 17: Eden-Tracelab allows for arbitrarily deep zooming.
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5 Future Work

While all the stated goals of this thesis have been met by the provided implementation, the following

provides an overview of possible future extensions and improvements to Eden-Tracelab.

Missing views

First and foremost, EdenTV still has more features than Eden-Tracelab. Due to the time constraints

of this thesis, the full feature set could not be reproduced. The two main missing elements are the

thread view, and inclusion of messages. Both would provide an increase in the research opportunities

of Eden-Tracelab. The thread view provides the programmer with more �ne-grained information on the

state of her processes, which might help in identifying performance problems. The current version of

Eden-Tracelab o�ers the ability to precisely ascertain the state of a given process or machine at any point

in time. However, the communication in between those processes often provides the context to interpret

that information - knowing that a process is blocked at a given point in time is not as useful a piece of

information as knowing why its blocked.

Level of detail

On low level of detail settings the program often encounters the following problem: Rather large areas of

the trace are simply not colored in, due to the fact that those areas contain only events shorter than the

threshold set by the level of detail. To counteract this, while still not retrieving every single event from

the database, an analysis feature for detecting those areas and averaging could be developed, similar to

ghc-events-analyze , which was developed by de Vries et al.[5]

Performance

Analyzing traces with Eden-Tracelab is still rather time intensive: The traces that were analyzed for

demonstration purposes in this thesis showed that analyzing a trace and transferring the results into the

database took place at a rate between 15-20 MB/minute of trace �le data. While this is an acceptable

pace for smaller traces it means that a trace of one gigabyte would take about an hour to be processed.

GUI Behavior

Currently Eden-Tracelab reloads all the events displayed during the current time window if a zoom event

is registered, or if the level of detail is changed. While this is �ne for demonstration purposes, future

versions should be able to �lter out unnecessary events, and then only reload the ones not yet in memory.

For example, after a zoom-in has occurred, Eden-Tracelab should �lter out all the events that would be

rendered o� screen and only then load the ones that are smaller than those that would be displayed in

the previous zoom setting.
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6 Conclusion

The tool developed in this thesis addresses and solves some of the major issues encountered in the origi-

nal EdenTV. While the original EdenTV is bound by the amount of RAM available on the system when

opening larger �les, Eden-Tracelab is not. Due to its iterative parsing approach, Eden-Tracelab is exe-

cuted with a �xed memory footprint, regardless of �le size. While EdenTV limits the maximum zoom

level through its �xed pixel bu�er, Eden-Tracelab is able to zoom into a trace arbitrarily deep. This is

accomplished by re-drawing the current view on every zoom event. Eden-Tracelab was developed to have

a clear and extensible interface. There is potential for future researchers to add additional analysis op-

tions to the interface: By extending the web service with additional API calls, and using the visualization

functions of D3.js, new analysis options can be added with reasonable e�ort. This thesis also doubles as

a reference and documentation for the implementation of Eden-Tracelab.

While this thesis accomplishes its stated goal of creating a proof-of-concept implementation for an al-

ternative trace-visualization tool that can handle arbitrarily large �les, it does not provide all features

available within EdenTV: So far, only two of the three views have been implemented, and there is no

feature to analyze message passing between machines. EdenTV remains the more powerful analysis tool

in these aspects. However, in its current state Eden-Tracelab already provides a good basis for imple-

menting these and other features. Thus it is plausible that feature parity with EdenTV can be reached,

without losing any of the additional bene�ts of Eden-Tracelab.
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Deutsche Zusammenfassung

EdenTV stellt wirksame Analysemöglichkeiten für die Performance-optimierung von in Eden geschriebe-

nen parallelen funktionalen Programmen zur Verfügung. Dazu gehören die Möglichkeit, die Zustände

von Maschinen, Prozessen und Threads eines Programms und die Nachrichtenkommunikation zwischen

Prozessen zu visualisieren. Dennoch besitzt EdenTV einige Einschränkungen, die die Möglichkeiten der

Traceanalyse beeinträchtigen. So kann EdenTV nur Tracedateien bis zu einer gewissen Dateigröÿe ö�nen,

begrenzt durch den zur Verfügung stehenden Arbeitsspeicher. Auÿerdem zeichnet EdenTV die Trace-

Visualisierung in einen Pixelbu�er mit fester Gröÿe, der beim zoomen lediglich skaliert wird. Daher gibt

es eine untere Schranke für die Länge der in EdenTV darstellbaren Events. Im Laufe dieser Arbeit wurde

das Programm Eden-Tracelab zur Traceanalyse entwickelt, das diese Mängel nicht enthält.

Diese Arbeit dokumentiert das Design und die Implementierung von Eden-Tracelab, und die dabei ver-

wendeten Technologien und Algorithmen. Anders als EdenTV ist Eden-Tracelab nicht als monolithische

Anwendung implementiert, sondern in einer Server-Client Architektur als Webanwendung. Eden-Tracelab

kann in drei Module aufgeteilt werden: Den Parser/Eventprozessor, den Webservice, und den HTML5

Viewer. Aufgabe des Parser/Eventprozessors ist das Parsen der binären *.eventlog-�les, und das Gener-

ieren von Events höherer Ordnung, die in der Datenbank abgelegt und im HTML5 Viewer dargestellt

werden können. Zum Parsen wurde ein iterativer Ansatz gewählt, so dass der Parser zu jedem Zeitpunkt

nur einige wenige Events im Arbeitsspeicher halten muss. Dazu wurde ein Parser für das eventlog-Format

mithilfe der Parserbibliothek attoparsec verfasst. Der Eventprozessor nimmt die vom Parser in chronol-

ogischer Reihenfolge ausgelesenen Events entgegen, und modi�ziert damit ein internes Modell des Eden

Runtime Systems. Im Laufe dieses Prozesses werden Events höherer Ordnung generiert, die anschlieÿend

in die Datenbank geschrieben werden, mit Hilfe eines Datenbankmoduls das mit der Datenbankbibliothek

postgresql-simple implementiert wurde. Der Webservice, welcher auf demWeb-Framework Scotty basiert,

dient als Schnittstelle zwischen der postgres-Datenbank und dem HTML5 Viewer. Der HTML5 Viewer

wurde in Co�eeScript entwickelt, unter Zuhilfenahme der Javascriptbibliotheken jQuery und D3.js.

Zum Zeitpunkt der Abgabe dieser Arbeit sind zwei der in EdenTV enthaltenen Traceansichten erfolgreich

implementiert: Die Maschinen- und Prozessansicht. Die beiden Entwicklungsziele wurden erreicht: Eden-

Tracelab kann sowohl Dateien beliebiger Gröÿe ö�nen (nur beschränkt durch den für die Datenbank zur

Verfügung stehenden Festplattenspeicher), als auch beliebige Vergröÿerungsstufen von Traces darstellen.
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